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On the invertible objects in tensor categories

A. Gancheva

Theoretical Physics Division, Institute for Nuclear Research and Nuclear Energy, Tsarigradsko Chaussee 72, 1784 Sofia, Bulgaria

Received 1st October 2001 / Received in final form 12 April 2002
Published online 2 October 2002 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2002

Abstract. The invertible objects in a tensor category form a subcategory the Grothendieck ring of which
is the group ring of an abelian group. This abelian fusion ring acts on the objects of the initial category
and one can in principle determine all 6j-symbols that contain the lable of an invertible object.

PACS. 02.20.Uw Quantum groups

1 Introduction

Symmetries in physics and the group or algebra objects
standing behind them are a very well developed area. On
the other hand tensor categories still is considered an ex-
otic subject to be taught in a physicists curriculum. By
the Tannaka-Krein duality the group and the category of
its representations contain the same information. And in
fact it is exactly the category side of this duality which is
most natural for physical models. The categorical data en-
ters directly in such models or even can be measured in ex-
periments (say the Clebsch-Gordon rules). Another reason
to consider seriously tensor categories is that many gen-
eralizations (like passing from a symmetric to a braided
category) are more natural in the language of categories
than in their algebraic Tannaka duals. In the case of ratio-
nal conformal field theory models the relevant categories,
which are not Tannakian in the narrow sense of the word,
were described by Moore and Seiberg seven years before
the correct algebraic duals, the correct quantum symme-
tries (the weak Hopf algebras of Böhm and Szlachanyi)
were discovered.

Thus it is worthwhile to try to understand better ten-
sor categories. (Good references for the notions discussed
here are the lectures [2] or the textbook [23].) The struc-
ture theory describing notions like subgroups, normal sub-
groups, simple groups, composition series, etc, are central
in group theory. One would like to have a similar struc-
ture theory in tensor categories. Categories where all ob-
jects are invertible are fully characterized by their fusion
rules and a third cohomology class (of the abelian group
cohomology) characterizing the solution of the pentagon
equation. Here we consider the simplest possible case of
structure theory when we have a tensor category contain-
ing a subcategory of invertible objects.
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2 Fusion rings

The definition of a fusion ring R [9,10,6] is an abstraction
of the properties of the Grothendieck ring K0(C) of a rigid
braided semisimple monoidal category C (a tensor cate-
gory for short). The functor K0 forgets about morphisms,
in particular about isomorphisms, i.e., K0(x) = K0(y)
for isomorphic objects x � y. Abusing notation we de-
note both the object x and the ring element K0(x) by
x and hence K0(x ⊗ y) = x · y and K0(x ⊕ y) = x + y.
For certain issues it is convenient to pass to an algebra
(over the complex numbers) thus a fusion algebra R is a
unital associative and commutative algebra with a chosen
basis S such that the fusion rules Nz

xy, x, y, z ∈ S, i.e.,
the structure constants in this basis, x · y =

∑
z Nz

xyz,
are in Z+ and their is an involutive automorphism x → x̄
such that N1

xy = δx̄,y. The set S corresponds to the sec-
tors or the spectrum of C, i.e., the equivalence classes of
simple objects or irreps, the monoidal structure in C is
responsible for the structure of unital associative ring, in
particular Nz

xy = dim(Hom(x⊗y, z)), the braiding for the
commutativity, while the rigidity translates in the involu-
tive automorphism.

Fusion rings or algebras appear in many occasions
(here we consider only the case of finite dimensional
ones): the category C in K0(C) could be Rep(finite (quan-
tum) group); Rep(Uq(g))/Z with qp = 1, g a simple
Lie algebra, and Z the ideal of zero quantum dimen-
sional modules; also C could be the Moore-Seiberg cate-
gory of 2-dimensional rational conformal field theory (2D-
RCFT) or the Doplicher-Roberts category of localizable
automorphisms of the algebra of observables of a 2D-QFT
(quantum field theory) with S labeling the superselection
sectors (the generalized charges). The last three are typi-
cally non Tannakian categories and in particular the sta-
tistical dimensions(=ranks) of the sectors are in general
only algebraic integers. Most generally C is the rep cate-
gory of a quasitriangular weak Hopf algebra (or quantum
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groupoid). On many occasions (2D-RCFT, 2D-QFT) one
has more structure with C being ribbon(=tortile) and in
fact a Turaev modular category with S comprising a rep-
resentation of the modular group SL2(Z) with modular
S- and T -matrices. The S-matrix plays the role of charac-
ters and diagonalizes the fusion rules (Verlinde’s famous
formula) while T -matrix is diagonal with the balancing
phases on the diagonal.

Fusion algebras are particular cases of table alge-
bras [1]. For a table algebra the requirements that
the structure constants Nz

xy are positive integers and
N1

xy = δx̄,y are relaxed to Nz
xy ∈ R+ and N1

xy �= 0 iff
x̄ = y. Table algebras have been extensively studied by
Arad, Blau and coworkers. Particular cases of table alge-
bras with generators of dimension 2 or 3 have been clas-
sified.

For finite groups it is clear that simple groups have
fusion rules algebras which have no notrivial subfusion
rule algebras, hence such fusion rule algebras is natural
to call simple. More generally if a group G has a normal
subgroup H then K0(G/H) is a subfusion rule algebra of
K0(G). This extends to Hopf algebras [19] and [20]. For
table algebras there is a more developed structure the-
ory [3] – in particular one has composition series for table
algebras. What is the theory of extensions for fusion rule
algebras is an open subject. Since K0 is only half exact
one will probably have to use the higher K-functors and
the long exact sequence in K-theory to relate information
about the structure of tensor categories and their fusion
rule algebras.

An invertible object a is a simple object that can be
characterized in several ways – either da = 1, or a⊗ ā � 1,
or a ⊗ x is simple (denote it (ax) for every simple x. The
invertible objects I ⊂ S form a basis of a fusion subalgebra
A ⊂ R that is the group algebra of a finite abelian group.
Let us lable by a, b, c, . . . invertible objects while leav-
ing the letters p, q, . . . , x, y, . . . for generic simple objects.
The fusion ring R breaks up into orbits, or simple mod-
ules, under the left/right action of A. This is the simplest
situation of a fusion ring and a subring that we would like
to analyse in particular its relevance to categorification.

In Conformal Field Theory language invertible objects
correspond to simple currents. Simple currents have many
application – in particular the analysis of the so called
simple current extensions and construction of modular in-
variants [4,13,21].

3 Categorification

Categorification, i.e., reversing the K0 functor, is a very
challenging problem. Some very initial “experimental”
work of solving the pentagon equations to obtain cate-
gories from given fusion rules was done in [11]. For the
fusion rules of truncated sl(n) with the relevant Hecke
algebra the corresponding braided tensor categories were
reconstructed in [16]. The pentagon is a (in general a non-
abelian) 3-cocycle condition – a preliminary sketch of how
to attack the relevant nonabelian cohomology problem is

given in [5]. For the case of abelian fusion rules (R = A
is the group algebra of an abelian group) it is an ordinary
group cohomology problem solved in [9,18]. The categori-
fication of the fusion rules of the quaternionic or the rank
8 dihedral group and their generalizations (where all but
one of the sectors are abelian) was done in [22]. One would
like to characterize the image of K0 in the category of
all fusion rule algebras and find “moduli” distinguishing
categories with the same fusion rules. In a very recent pa-
per [8] the authors have proved the vanishing of the Yetter
cohomology implying Ocneanu’s rigidity, i.e., for each fu-
sion ring there are a finite number of nonequivalent tensor
categories mapped by K0 to this ring. In the case of mod-
ular categories I have been tempted since a long time to
conjecture [14] that the balancing phases (the T -matrix)
separates (classes of equivalent) categories with the same
fusion rules (=“character table”=modular S-matrix), i.e.,
modular fusion algebras provide a complete invariant for
modular tensor categories.

4 Invertible objects

Suppressing the summation over the multiplicities the
pentagon equation reads

F pqv,t
uy Furs,t

xv =
∑

w

F pqr,x
uw F pws,t

xy F qrs,y
wv (1)

where the 6j-symbols (tetrahedra) are defined by

((p ⊗ q)u ⊗ r)t � ⊕v F pqr,t
uv (p ⊗ (q ⊗ r)v)t

with (p⊗q)r denoting (again suppressing the multiplicities
N r

pq) the projection on a particular sector r of the rhs of
p ⊗ q = · · · ⊕ r ⊕ . . .

Consider now particular cases of tetrahedra where
some lable is from the set of invertible objects and be-
cause these are fixed by only three labels we denote

fabc = F
abc,(abc)
(ab)(bc) ∈ T6,

fabx = F
abx,(abx)
(ab)(bx) ∈ T3,

faxb = F
axb,(axb)
(ax)(xb) ∈ T2,

where we write Tn for the set of tetrahedra with n of the
6 labels corresponding to invertible objects. (We assume
that the S4 symmetry of 6j-symbols [12] has been used.)
The tetrahedra with one invertible object

fz
xay = F xay,z

(xa)(ay) ∈ T1, z ∈ supp(xay),

fz
axy = F axy,z

(ax)(āz) ∈ T1, z ∈ supp(axy)
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are square matrices of size Nz
xa,y = Nz

x,ay. For the above
tetrahedra the pentagon equations become

P65 : f(ab)cd fab(cd) = fabc fa(bc)d fbcd (2)

P6,34 : f(xa)bc fxa(bc) = fxab fx(ab)c fabc (3)

P32,23 : f(ax)bc fax(bc) = faxb fa(xb)c fxbc (4)

P32,13 : fz
(xa)by fz

xa(by) = fxab fz
x(ab)y faby, (5)

P2,14 : fz
(ax)by fz

ax(by) = faxb fz
a(xb)y fz

xby, (6)

where in the last two lines we again have suppressed sum-
mation over multiplicities and where z ∈ supp(xaby) and
z ∈ supp(axby) respectively. One sees that (2) is exactly
the 3-cocycle condition of abelian group cohomology writ-
ten multiplicatively and analyzed in details in [7] and [9].
Thus the multiplication between invertible objects is as-
sociative up to this cocycle. Considering the action of the
invertible objects on generic ones we have the module
property up to a 3-cocycle in T3 satisfying the conditions
P6,34 and the bimodule property up to a 3-cocycle in T2

satisfying P32,23 . The first two are described as cocycle
conditions in [7] while a straightforward generalization of
the bar complex used there will describe also the third set
of pentagons. (Note that in all these pentagons there are
no summations so ‘taking logarithms’ we arrive at usual
cocycle conditions.) By appropriate gauge choice one can
simplify the last two sets of equations and turn them again
into usual cohomology conditions. (This will be explained
in details elsewhere.) They fix the tetrahedra from T1

which are the ‘obstruction’ to the relative tensor prod-
uct of A modules. A simple generalization of [22] shows
that if B ⊂ A is the subalgebra of elements that are fixed
by some element of S then the tetrahedra from T6 or T3

with a lable from B trivialize while the ones from T2 with
a lable from B provide a bicharacter of B.

Once the tetrahedra from T1 have been determined
we have an ‘action’ of the invertible objects on a generic
6j-symbol

f t
ua(āv) F pqv,t

uy = f (ua)
pqa fy

qa(āv) F
p(qa)(āv),t
(ua)y (7)

(again summation over multiplicities has been suppressed
while there is no summation over labels). I.e., if we want to
solve the pentagon for a fusion ring that has an abelian fu-
sion subring the tetrahedra from Tn can be determined by
ordinary abelian group cohomology while for the generic
tetrahedra one effectively has to consider them as differ-
ent unknowns only if their labels are from different orbits
of the abelian fusion ring. This together with S4 symme-
try will considerably reduce the number of unknowns and
make the pentagons manageable even for relatively larger
fusion rings.
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